

Cashiva Audit Report
For WMT Prime Corp

Revision Date: 2025-06-09

1

Table of Contents
1. Executive Summary ... 2

1.1. Project Introduction ... 2

1.2. Audit Objectives & Scope ... 2

1.3. Overall Security Assessment .. 2

1.4. Summary of Findings .. 3

2. Disclaimer .. 3

3. About Cashiva Community LLC .. 3

4. Project Overview ... 4

4.1. Stated Purpose ... 4

4.2. Technical System Architecture .. 5

4.3. Key Components .. 5

5. Audit Scope & Methodology ... 6

5.1. Methodology .. 6

5.2. Severity Level Definitions ... 7

6. Findings ... 7

6.1. Critical Severity Findings .. 7

6.1.1. CST-C-001: Reentrancy in Withdrawal Flow (CashivaMintableToken) ... 7

6.1.2. CST-C-002: Reentrancy in Unwrap Function (CashivaNativeWrappedToken) 9

6.1.3. CST-C-003: Storage Location Shadowing (CashivaMintableToken & Dependencies) 10

6.2. High Severity Findings .. 11

6.2.1. CST-H-001: Arbitrary ETH Transfer (CashivaNativeWrappedToken) .. 11

6.3. Medium Severity Findings .. 11

6.3.1. CST-M-001: Centralization Risks in Owner-Controlled Privileged Functions

(CashivaMintableToken) .. 11

6.4. Low Severity Findings ... 12

7. Privileged Roles & Access Control Analysis ... 13

8. Centralization Risks & Owner Capabilities... 15

8.1. Privileged Role Capabilities: ... 15

8.2. Manifestation of Centralization Risks: .. 15

9. Conclusion ... 16

2

1. Executive Summary

1.1. Project Introduction

This report details the findings of a smart contract security audit performed by Cashiva Community LLC

on the Cashiva Standard Tokens (CST) contracts, provided by WMT Prime Corp. Cashiva Standard Tokens

are asset-backed cryptocurrencies built on audited ERC20 smart contracts, featuring upgradeability and a

unique mechanism that writes event in a real-time exchange rate at the moment of transfer through a

trusted oracle - ensuring each token is transparently backed by crypto and denominated in fiat.

1.2. Audit Objectives & Scope

The primary objective of this audit was to identify potential security vulnerabilities, design flaws, and

deviations from best practices within the provided Solidity smart contract code, designed to manage the

token on-chain. The scope was limited to the smart contracts associated with the commit hash

`f44786df418b66f702ee1fdbdc45b3c3805533a3`. The audit does not cover verification of the off-chain

asset backing or custodian legal structures.

1.3. Overall Security Assessment

The security audit of the CashivaMintableToken and CashivaNativeWrappedToken contracts reveals a

critically concerning security posture. The sheer volume and severity of the identified vulnerabilities,

particularly the six distinct "Critical" findings (CST-C-001 through CST-C-003), one "High" finding CST-H-

001 and one "Medium" severity finding CST-M-001, indicate fundamental flaws in the current design and

implementation.

These critical issues span multiple categories, including several instances of reentrancy vulnerabilities

across different contract functionalities (CST-C-001, CST-C-002), which could lead directly to fund theft.

Storage location shadowing (CST-C-003) presents a significant risk to data integrity and contract stability,

especially during potential upgrades or maintenance. The presence of an arbitrary ETH transfer

mechanism (CST-H-001) further expose the contracts to severe financial exploitation and manipulation.

A core characteristic exacerbating these issues is the extreme concentration of power in privileged roles

(CST-M-001). The initial granting of `DEFAULT_ADMIN_ROLE`, `MINTER_ROLE`, and `BURNER_ROLE` to a

single `_msgSender()` during initialization, coupled with `onlyOwner` administrative functions, means

the entire system's integrity and user assets are highly dependent on the security and trustworthiness of

one or very few entities. This introduces significant centralization risks.

While the contracts may utilize elements from established libraries (as suggested by naming conventions

like `ERC20Upgradeable` and initialization patterns), the specific implementation within the Cashiva

Standard Tokens contracts has introduced these severe flaws. The conclusion of the report is

unequivocal: the contracts should not be deployed to mainnet until all critical and high severity issues

are comprehensively addressed.

Prioritized remediation of all identified vulnerabilities, especially the critical ones related to reentrancy,

storage integrity, fund control, oracle safety, and role management, is essential. Following remediation, a

thorough follow-up audit is mandatory to ensure the fixes are correctly implemented and do not

introduce new vulnerabilities, thereby aiming to establish the long-term security, reliability, and

operational safety of the Cashiva Standard Tokens system.

3

1.4. Summary of Findings

ID Title Severity Status

CST-C-001 Reentrancy in Withdrawal Flow Critical Fixed

CST-C-002 Reentrancy in Unwrap Function Critical Fixed

CST-C-003 Storage Location Shadowing Critical Fixed

CST-H-001 Arbitrary ETH Transfer High Acknowledged

CST-M-001 Centralization Risks in Administrative Functions Medium Acknowledged

2. Disclaimer
This audit report is provided for informational purposes only and is based on the code provided to

Cashiva Community LLC at a specific point in time (commit hash

`f44786df418b66f702ee1fdbdc45b3c3805533a3`). Smart contract security is a complex and evolving

field; an audit does not guarantee the absence of all vulnerabilities.

Crucially, the scope of this report is limited to the smart contract code; it does not constitute a

financial audit or verification of any off-chain assets, processes, or legal claims referenced in project

documentation.

Cashiva Community LLC makes no warranties, express or implied, regarding the complete security of the

audited code or its fitness for any particular purpose. The client is solely responsible for the deployment,

maintenance, and operation of the smart contracts, and for the veracity and execution of any off-chain

procedures. This report should not be considered investment advice.

3. About Cashiva Community LLC
Cashiva Community LLC is a company that specializes in blockchain technologies, DeFi development, and

smart contract auditing. We are dedicated to fostering a more secure and reliable Web3 ecosystem by

providing comprehensive security assessments and development expertise.

Our team is composed of seasoned blockchain professionals, security researchers, and smart contract

engineers with deep expertise across a range of domains, including:

 Smart Contract Auditing: In-depth analysis of Solidity and other smart contract languages to

identify vulnerabilities, logic flaws, and gas optimization opportunities.

 DeFi Protocol Development & Security: Extensive experience in designing, building, and

securing complex decentralized finance applications, including lending platforms, DEXs, yield

farming protocols, and more.

 Blockchain Technology & Architecture: Profound understanding of core blockchain principles,

consensus mechanisms, cryptographic primitives, and various Layer 1 and Layer 2 solutions.

 Exploitation Techniques & Mitigation Strategies: Up-to-date knowledge of common and novel

attack vectors targeting smart contracts and blockchain systems, and best practices for their

prevention.

4

 Security Best Practices & Standards: Adherence to industry-leading security guidelines and

development standards.

We employ a meticulous audit methodology that combines manual line-by-line code review, automated

static and dynamic analysis tools, and conceptual logic evaluation to deliver thorough and actionable

security reports. Our goal is to empower our clients with the insights and recommendations needed to

build and deploy secure, robust, and innovative blockchain solutions.

Our Commitment:

 Technical Excellence: We pride ourselves on the depth and rigor of our technical analysis.

 Actionable Insights: Our reports are designed to be clear, concise, and provide practical

recommendations.

 Collaborative Partnership: We work closely with our clients, fostering open communication

throughout the audit and development lifecycle.

 Upholding Security Standards: We are committed to contributing to the overall security and

integrity of the blockchain space.

For more information about Cashiva Community LLC, our services, and our contributions to the DeFi and

blockchain ecosystem, please visit www.cashiva.com or contact us at crypto@cashiva.com.

4. Project Overview

4.1. Stated Purpose

According to project documentation provided by WMT Prime Corp, the Cashiva Standart Tokens are

asset-backed cryptocurrency tokens operating on the Ethereum blockchain, with a unique feature of

dynamic rate fixation.

 Cashiva Standard Token (CST) are cryptocurrency-backed tokens operating on the Ethereum blockchain, featuring a

unique dynamic exchange rate fixation. Each token is issued according to a specific currency pair, where the token

value is denominated in fiat currency and collateralized by cryptocurrency (Bitcoin, Ethereum, etc.). With every

transaction, the exchange rate is fixed via a trusted oracle, ensuring transparent and up-to-date determination of

the asset's real value. The main advantage of CST tokens is the combination of fiat currency stability with

cryptocurrency liquidity and potential, making them ideal for decentralized financial platforms (DeFi), lending

services, derivatives trading, and flexible cross-chain transfers. Thanks to the rate-fixation mechanism, users can

confidently rely on accurate value determination during transfers, while the automated token issuance and

redemption system ensures a high level of security and transaction efficiency.

IMPORTANT NOTE ON AUDIT SCOPE:

This audit focuses exclusively on the technical implementation and security of the Solidity smart

contract code, which manages the token on the blockchain.

The audit DOES NOT include verification of, and provides NO opinion on:

 The existence, quantity, quality, or audits of the cryptocurrency collateral backing the CST

tokens.

 The security, insurance, or operational procedures of any wallets, vaults, or custodial

infrastructure holding the collateral assets (e.g., Bitcoin, Ethereum).

 The validity, enforceability, or legal structure of any claims to fiat-denominated value or the

mechanism of dynamic exchange rate fixation.

http://www.cashiva.com/
mailto:crypto@cashiva.com

5

 Any off-chain token issuance or redemption processes, oracle reliability, or collateral reserve

management procedures.

The following sections describe the technical architecture of the smart contract system reviewed.

4.2. Technical System Architecture

The Cashiva token system consists of two main token types, each designed for specific use cases:

 `CashivaNativeWrappedToken`: A token designed for wrapping native blockchain assets (like ETH)
with the following inheritance structure:

 `CashivaStandardToken`: Base token implementation with price feed integration

 `NativeWrappable`: Handles wrapping/unwrapping of native blockchain assets

 `UUPSUpgradeable`: Implements the Universal Upgradeable Proxy Standard

 `CashivaMintableToken`: A token designed for wrapped off-chain assets (like BTC) with the
following inheritance structure:

 `CashivaStandardToken`: Base token implementation with price feed integration

 `Mintable`: Provides controlled minting capabilities with role-based access

 `PausableUpgradeable`: Allows pausing all token operations in emergencies

 `Freezable`: Enables freezing individual accounts

 `UUPSUpgradeable`: Implements the Universal Upgradeable Proxy Standard

Both token types inherit from `CashivaStandardToken` which provides:

 `ERC20Upgradeable`: Standard ERC20 token functionality

 `TransferPriceEmitter`: Price feed integration using Pyth-like oracles

 `OwnableUpgradeable`: Basic access control

 `ERC20PermitUpgradeable`: Gas-less approval mechanism (EIP-2612)

4.3. Key Components

 `CashivaNativeWrappedToken` Components:

 Native asset wrapping/unwrapping functionality

 Configurable wrap fees with min limit

 Price feed integration for transfer price tracking

 Fee collection mechanism for wrapped assets

 `CashivaMintableToken` Components:

 Role-based minting control (`MINTER_ROLE`, `BURNER_ROLE`)

 Account freezing capability for compliance

 Pausable operations for emergency response

6

 Configurable decimals for different asset types

 Price feed integration for transfer price tracking

 Shared Infrastructure:

 `TransferPriceEmitter`: Emits price data during transfers using Pyth-like oracle

 `WrapFee`: Implements configurable fee mechanisms

 `Freezable`: Provides account-level transfer restrictions

 Storage pattern using ERC-7201 namespaced storage slot

The system uses a modular design with clear separation of concerns, allowing for flexible token

implementations while maintaining security and upgradeability. Each component is designed to be

independently upgradeable through the UUPS proxy pattern, with careful consideration for storage

layouts to prevent collisions.

5. Audit Scope & Methodology
Commit Hash: `f44786df418b66f702ee1fdbdc45b3c3805533a3`

This audit covered the security and functionality of two primary smart

contracts, `CashivaMintableToken` and `CashivaNativeWrappedToken`, along with their inherited

contracts (`CashivaStandardToken`, `Mintable`, `Freezable`, `NativeWrappable`,

`TransferPriceEmitter`).

Key focus areas included:

 Smart Contract Security: Identifying common vulnerabilities, ensuring secure native token

wrapping/unwrapping, minting controls, access management, and the security of freezing/pause

mechanisms.

 Token Standards & Upgrades: Verifying ERC20 adherence, correctness of UUPS upgradeability,

and safe storage layout.

 Custom Features: Reviewing Pyth-like Oracle price feed integration, fee mechanisms for

wrapping/unwrapping, native token handling, and controls for minting, burning, and freezing.

 Implementation Quality: Assessing gas optimization, Solidity best practices, event emission, and

access controls.

 Integrations: Checking the security of the Pyth-like Oracle integration, native token handling

safety, and fee calculation accuracy.

Out of scope items were:

 Off-chain components (e.g., client applications, external oracle data quality).

 Business logic (e.g., economic model, tokenomics, business strategy).

 Internal workings of external systems like the Pyth-like Oracle (beyond direct interactions).

5.1. Methodology

The audit was conducted using a combination of manual code review and conceptual analysis:

7

 Understanding the Codebase: Initial review to understand the architecture, intended on-chain

functionality, and control flow.

 Systematic Manual Review: Line-by-line examination of the smart contracts to identify potential

vulnerabilities based on known attack vectors and best practices.

 Vulnerability Analysis: Cross-referencing potential issues with common vulnerability checklists

(e.g., SWC Registry).

 Business Logic Review: Ensuring the implemented on-chain logic aligns with the inferred

intentions of the custom modules.

 Access Control Analysis: Verifying that sensitive functions are appropriately protected.

 Upgradeability Review: Assessing the UUPS implementation and custom storage slot

management.

 Reporting: Documenting findings with severity, impact, and recommendations.

5.2. Severity Level Definitions

Critical: Vulnerabilities that could lead to a loss of funds, data manipulation, contract unavailability, or a

takeover of contract ownership. Also includes flaws that make the contract highly unstable or prone to

severe malfunction during routine maintenance, such as dependency upgrades.

High: Vulnerabilities that could lead to unexpected behavior, minor fund loss, or significantly hinder

contract functionality, but are not as easily exploitable as Critical. (Note: No High severity findings were

identified in this illustrative report, but the definition is retained for completeness).

Medium: Vulnerabilities that represent a deviation from best practices, could lead to inefficiencies, or

have a security impact. The likelihood of exploitation might be lower for some medium issues, but the

potential impact could still be significant to severe, warranting prioritized attention.

Low: Minor issues, such as gas optimizations or code style suggestions, that do not pose a direct security

threat.

Informational: Observations, suggestions for code clarity, or comments that do not directly impact

security but could improve maintainability or understanding.

Resolved: The finding has been addressed by the client.

Acknowledged: The client has acknowledged the finding but may not fix it due to specific reasons.

Unresolved: The finding has not yet been addressed.

6. Findings

6.1. Critical Severity Findings

6.1.1. CST-C-001: Reentrancy in Withdrawal Flow (CashivaMintableToken)

Status: Fixed

Justification for Prioritized Attention: This finding is classified as Critical because it could allow an

attacker to re-enter the `requestWithdrawal` function before critical state updates are complete,

potentially leading to multiple withdrawals for the same amount or draining funds from the contract.

Immediate attention is required.

8

Description: The `requestWithdrawal` function in `CashivaMintableToken` performs an

external call (`_transfer`) before all state variables related to the withdrawal request (like

incrementing `_requestId`) are fully updated. This violates the checks-effects-interactions pattern.

function requestWithdrawal(string memory recipient, uint256 amount) public

virtual returns (WithdrawRequest memory) {

 require(amount > 0, "Amount must be greater than 0");

 require(balanceOf(_msgSender()) >= amount, "Insufficient balance");

 MintableStorage storage $ = _getMintableStorage();

 $._withdrawRequests[$._requestId].status = WithdrawRequestStatus.Pending;

 // ... state changes ...

 _transfer(_msgSender(), address(this), amount); // External call before state

update completion

 uint256 fee = _calcWrapFee(amount);

 emit WithdrawalRequestCreated(_msgSender(), $._requestId, recipient, amount,

fee);

 return $._withdrawRequests[$._requestId++];

}

Impact:

1. Fund Theft: An attacker could craft a malicious contract to re-enter the function after the
`_transfer` but before `_requestId` is incremented, effectively requesting the same
withdrawal multiple times or exploiting other state inconsistencies.

2. State Corruption: Reentrancy can lead to inconsistent state within the contract regarding
withdrawal requests and balances.

Recommendations:

1. Implement the checks-effects-interactions pattern and use a reentrancy guard. Increment
`_requestId` and update request details before the external `_transfer` call.

function requestWithdrawal(string memory recipient, uint256 amount) public

virtual nonReentrant returns (WithdrawRequest memory) { // Added nonReentrant

 require(amount > 0, "Amount must be greater than 0");

 require(balanceOf(_msgSender()) >= amount, "Insufficient balance");

 MintableStorage storage $ = _getMintableStorage();

 uint256 currentRequestId = $._requestId; // Read before increment

 $._requestId++; // Effect: Increment first

 // Effects: Update request details

 $._withdrawRequests[currentRequestId].status = WithdrawRequestStatus.Pending;

 $._withdrawRequests[currentRequestId].account = _msgSender();

 $._withdrawRequests[currentRequestId].recipient = recipient;

 $._withdrawRequests[currentRequestId].amount = amount;

9

 // Interaction: External call last after all state changes for this specific

request creation

 _transfer(_msgSender(), address(this), amount);

 uint256 fee = _calcWrapFee(amount); // Can be calculated earlier if not

dependent on post-transfer state

 emit WithdrawalRequestCreated(_msgSender(), currentRequestId, recipient,

amount, fee);

 return $._withdrawRequests[currentRequestId];

}

6.1.2. CST-C-002: Reentrancy in Unwrap Function (CashivaNativeWrappedToken)

Status: Fixed

Justification for Prioritized Attention: This finding is classified as Critical because the external call

`payable(recipient).transfer(amount)` occurs before the token burning (`_burn`) operation.

A malicious recipient contract could re-enter and potentially trigger multiple ETH transfers for a single

unwrap operation, leading to fund loss. Immediate attention is required.

Description: The _unwrap function in `CashivaNativeWrappedToken` sends ETH to the recipient

before burning the corresponding wrapped tokens. This is a classic reentrancy pattern.

function _unwrap(address recipient, uint256 value) internal virtual {

 uint256 fee = _calcWrapFee(value);

 uint256 amount = value - fee;

 payable(recipient).transfer(amount); // External call before state update

 emit Unwrap(recipient, value);

 _burn(address(this), value);

}

Impact:

1. Fund Theft: A malicious recipient contract could re-enter the unwrap process (or another
interacting function) after receiving ETH but before its wrapped tokens are burned, allowing it to
claim ETH multiple times for the same tokens.

2. State Inconsistency: The total supply of wrapped tokens might not accurately reflect the amount of
underlying native currency held by the contract if reentrancy occurs.

Recommendations:

2. Apply the checks-effects-interactions pattern: burn tokens (_burn - effect) before transferring ETH
(payable(recipient).transfer - interaction). Add a nonReentrant modifier.

function _unwrap(address recipient, uint256 value) internal virtual nonReentrant

{ // Added nonReentrant

 uint256 fee = _calcWrapFee(value);

 uint256 amountToTransfer = value - fee;

 // Effect: Burn tokens first

 _burn(address(this), value); // Assuming value is the amount to burn (gross)

 // If only amountToTransfer should be burned from

recipient, adjust logic

10

 // and ensure contract balance is sufficient for

this.

 // The original report implies

_burn(address(this), value) which burns from contract's own wrapped token

balance.

 emit Unwrap(recipient, value); // Event before interaction is acceptable if

it reflects intent prior to external call

 // Interaction: Transfer ETH last

 payable(recipient).transfer(amountToTransfer);

}

6.1.3. CST-C-003: Storage Location Shadowing (CashivaMintableToken &

Dependencies)

Status: Fixed

Justification for Prioritized Attention: This finding is classified as Critical because using identical constant

names (`STORAGE_LOCATION`) for different storage slot pointers across an inheritance hierarchy can

lead to severe storage collisions. This can result in one contract's storage overwriting another's, leading

to unpredictable behavior, data corruption, and potential loss of funds. Immediate attention is required

for contract stability.

Description: Multiple contracts in the inheritance chain (`CashivaMintableToken`, `Freezable`,

`Mintable`, `WrapFee`, `TransferPriceEmitter`) define a bytes32 private constant

`STORAGE_LOCATION` with different values. This is highly dangerous when these contracts are

inherited, as the diamond problem or simple linear inheritance can cause these to point to unintended

storage slots if not managed with extreme care, especially with upgradeable contracts. While private

limits direct collision, it's a very risky pattern that often indicates deeper issues with storage layout

management in upgradeable contracts. The primary risk is in how storage pointers are derived or used

based on these constants.

// In CashivaMintableToken.sol

bytes32 private constant STORAGE_LOCATION =

0x9b9e7ab05886f036ccbbe5f70f770ff36db154b0409040f4610d6927942ad500;

// In Freezable.sol

bytes32 private constant STORAGE_LOCATION =

0x98f5cbd3380b8191db24ff05e05a319c5f63cab76da3ae1bc25d634271302700;

// In Mintable.sol

bytes32 private constant STORAGE_LOCATION =

0xddb9e61613b3299de1a8214e91c696a267968494eb8f384023aadbd92496b700;

// In WrapFee.sol

bytes32 private constant STORAGE_LOCATION = /* value */;

// In TransferPriceEmitter.sol

bytes32 private constant STORAGE_LOCATION =

0xf116ee31fa11d5f3e9f2ed675718b59844fe1729415bbc6ccfe55c1ab01e2c00;

11

Impact:

1. State Corruption: Contract state variables can be overwritten by others, leading to incorrect
balances, allowances, roles, or other critical data.

2. Unpredictable Behavior: Functions may read or write to the wrong storage slots, causing severe
malfunctions.

3. Upgrade Incompatibility: This makes future upgrades extremely risky and prone to errors.

6.2. High Severity Findings

6.2.1. CST-H-001: Arbitrary ETH Transfer (CashivaNativeWrappedToken)

Status: Acknowledged

Justification for Prioritized Attention: This finding is classified as High because the `_withdrawFee`

function transfers the contract's withdrawable fee balance to `_msgSender()`. If this internal function

can be called by an unauthorized party or by an authorized party at an inappropriate time (e.g., via a

reentrancy or logic flaw elsewhere), it could lead to theft of accumulated fees.

Description: The `_withdrawFee` function in `CashivaNativeWrappedToken` (likely inherited or

part of its structure) directly transfers fees to `_msgSender()`. The risk depends on how and by whom

this internal function can be invoked. If `_msgSender()` within the context of this call can be an

arbitrary user or a less privileged role than intended for fee collection, it's a vulnerability.

function _withdrawFee() internal virtual {

 payable(_msgSender()).transfer(withdrawableFee());

}

Impact:

1. Fee Theft: Accumulated fees in the contract could be drained by an unauthorized address if it can
trigger this function directly or indirectly.

Privilege Escalation: A lower-privileged role might be able to call this function if access control is

improperly implemented on a public/external function that internally calls `_withdrawFee`.

6.3. Medium Severity Findings

6.3.1. CST-M-001: Centralization Risks in Owner-Controlled Privileged Functions

(CashivaMintableToken)

Status: Acknowledged

Justification for Prioritized Attention: This finding is classified as Medium as it represents a deviation
from best practices regarding decentralized governance. Several critical administrative and fund
management functions, including `pause()`, `unpause()`, `setWrapFeeParams()` and `burnFrozenFunds()`,
are controlled by a single onlyOwner. While some level of administrative control is often necessary,
reliance on a single owner account for such potent functions (including the ability to burn user funds
from frozen accounts) introduces a significant single point of failure and potential for abuse or error.
Description:
Administrative and potent fund management functions are restricted to `onlyOwner`. These include:
Pausing/unpausing the contract (`pause()`, `unpause()`).
Setting fee parameters (`setWrapFeeParams()`).

12

Burning all tokens from an account that has been marked as frozen (`burnFrozenFunds()`). The security
of `burnFrozenFunds` also depends heavily on the legitimacy and control over the freezing mechanism
(`onlyFrozen(account)`).

// In CashivaMintableToken

function pause() external onlyOwner {

 _pause();

}

function unpause() external onlyOwner {

 _unpause();

}

function burnFrozenFunds(address account) external onlyOwner onlyFrozen(account){

 uint256 balance = balanceOf(account);

 _burn(account, balance);

 emit FrozenFundsBurned(account, balance);

}

// In Both Contracts (via inheritance)

function setWrapFeeParams(uint256 feeRate_, uint256 minFee_, uint256 maxFee_)

public onlyOwner {

 setWrapFeeParams(feeRate, minFee_, maxFee_);

}

Impact:

 Single Point of Failure: If the owner's private key is compromised, malicious actors could take

devastating actions, such as pausing the contract indefinitely, setting exorbitant fees, or

unilaterally burning funds from frozen accounts.

 Risk of Abuse or Error: A malicious or careless owner could misuse these privileges. This could

involve:

 Implementing unfair fee structures.

 Unjustifiably pausing the contract, disrupting operations.

 Potentially abusing the freeze-and-burn mechanism: if the freezing mechanism itself is owner-

controlled without sufficient safeguards, an owner could maliciously freeze an account and then

burn its funds.

 Irreversible Loss for Users: In the case of `burnFrozenFunds`, if funds are burned mistakenly or

maliciously, they are permanently lost to the user.

 Reduced Trust & Centralization Concerns: Users may be wary of systems where a single entity

wields significant administrative and potentially destructive power over the contract's state and

user assets. This concentration of control deviates from decentralized principles.

6.4. Low Severity Findings

No Low severity findings were identified during this audit.

13

7. Privileged Roles & Access Control Analysis
The Cashiva token contracts implement a multi-layered access control system combining OpenZeppelin's

`AccessControlUpgradeable` and `OwnableUpgradeable` patterns. This creates a more granular

but still centralized permission structure.

Role Structure

 Owner Role (OwnableUpgradeable):
 Operational Control: Pause/Unpause token operations (`pause()`, `unpause()`)
 Account Management: Freeze/Unfreeze accounts (`freeze()`, `unfreeze()`), burn

frozen funds (`burnFrozenFunds()`)
 Fee Management: Set wrap fee parameters (`setWrapFeeParams()`)
 Contract Governance: Authorize upgrades (`_authorizeUpgrade()`)

 Minter Role (MINTER_ROLE):
 Token Creation: Process deposits and mint new tokens (`deposit()`)
 Restricted to authorized addresses through `AccessControl`

 Burner Role (BURNER_ROLE):
 Withdrawal Management: Complete or cancel withdrawal requests

(`completeWithdrawal()`, `cancelWithdrawal()`)

 Restricted to authorized addresses through `AccessControl`

Key Differences Between Token Types:

 CashivaMintableToken:

 Implements full role-based access control with `MINTER_ROLE` and `BURNER_ROLE`

 Includes freezing and pausing capabilities

 Supports manual minting and burning through controlled roles

 CashivaNativeWrappedToken:

 Focuses on wrapping native tokens (ETH)

 Simpler permission model primarily using `onlyOwner`

 Includes fee collection and withdrawal mechanisms

 Automatic minting/burning based on wrap/unwrap operations

Security Implications:

 Centralization Risks:

 Both contracts concentrate significant power in the owner role

 The owner can unilaterally freeze accounts and burn their funds

 No time-delay or multi-signature requirements for critical operations

 Owner can modify fee parameters without limits or delays

 Role Management Vulnerabilities:

 Initial setup grants all roles to the deployer

14

 No separation of duties between role administration and execution

 No restrictions on role combinations (same address can have multiple roles)

 Operational Risks:

 No emergency role recovery mechanism if owner key is compromised

 Lack of time-locks for sensitive operations

 No limits on consecutive operations or value thresholds

The `CashivaStandardToken` contract utilizes `OwnableUpgradeable`, granting extensive and critical

capabilities to a single `owner` address. This `owner` role is the sole administrative entity within the

smart contract system.

Owner Privileges (Summary):

 Operational Control: Pause/Unpause all key token operations (`pause()`, `unpause()`).

 Account Management: Freeze/Unfreeze individual accounts (`freeze()`, `unfreeze()`), and burn

all tokens from a frozen account (`burnFrozenFunds()`).

 Token Supply Control: Create new tokens (`mint()`), and burn tokens from the owner's balance

(`redeem()`).

 Economic Policy: Set transfer fee rates, maximum fees, and the fee recipient (`setFeeParams()`,

`setFeeRecipient()`).

 Contract Governance: Authorize upgrades to a new implementation logic for the entire contract

(`_authorizeUpgrade()`).

 Ownership Transfer: Manage the transfer of the `owner` role itself (`transferOwnership()`,

`acceptOwnership()`).

Security Implications:

The concentration of such sweeping powers into a single `owner` role means that the security and

integrity of the entire Cashiva Standard Tokens system fundamentally depends on the security and

trustworthiness of the entity controlling this single `owner` address. If this address is compromised or

acts maliciously, there are no on-chain mechanisms within the contract to prevent misuse of these

powers. The subsequent "Centralization Risks & Owner Capabilities" section discusses the implications of

these extensive powers in more detail.

Recommendations:

1. Multisig Wallet for Owner Role (Strongly Recommended): Replace single-signature ownership of the

owner address with a multisignature (multisig) wallet (e.g., Gnosis Safe). This significantly reduces the

risk of a single point of failure by requiring multiple trusted parties to approve critical actions. A multisig

setup distributes control and enhances governance security, mitigating risks from key compromise,

mistakes, or malicious insiders

2. Timelock Mechanism: Implement an additional timelock contract through which all `owner` actions

must pass. A timelock introduces a mandatory delay between the proposal of an action and its

execution. This provides transparency and a window for the community and users to review, discuss, and

potentially react (e.g., by exiting positions if possible) to significant upcoming changes, providing a

crucial check against immediate, unilateral actions by the `owner`.

15

8. Centralization Risks & Owner Capabilities
The Cashiva token contracts (`CashivaMintableToken` and `CashivaNativeWrappedToken`)

implement a role-based access control system with significant powers vested in privileged roles. This

section details the centralization risks and capabilities of these privileged roles.

8.1. Privileged Role Capabilities:

 Owner

o Fee Management (Both contracts):

 `setWrapFeeParams`: Sets wrap/unwrap fee parameters (rate capped at 100%).

 `withdrawFee`: Withdraws accumulated fees.

o Oracle Management (Both contracts):

 `setOracle`: Updates the price oracle.

 `setValidTimePeriod`: Sets valid price data time window.

o Account Control (`CashivaMintableToken`):

 `freeze` / `unfreeze`: Freezes or unfreezes user accounts.

 `burnFrozenFunds`: Burns tokens of frozen accounts.

o Upgrades (Both contracts):

 `_authorizeUpgrade`: Authorizes contract upgrades (UUPS).

o Operations (`CashivaMintableToken`):

 `pause` / `unpause`: Pauses/resumes all token functions.

 Minter (CashivaMintableToken - MINTER_ROLE)

 `deposit`: Mints tokens via deposit process.

 Burner (CashivaMintableToken - BURNER_ROLE)

 Manages token burning by completing or canceling withdrawal requests.

8.2. Manifestation of Centralization Risks:

The existence of these unchecked (by the contract itself) powers leads to significant risks:

 Single Point of Failure for Security: Compromise of the single `owner` key grants the attacker

complete and immediate control over all aspects of the token and its ecosystem.

 Potential for Malicious Owner Action: A rogue or compromised owner can:

 Mint tokens to themselves and drain liquidity.

 Set fees to 100% and redirect them.

 Freeze legitimate user accounts and burn their funds without recourse.

 Upgrade the contract to a malicious version.

 Operational Error by Owner: A mistake by the entity controlling the `owner` key when exercising

these powerful functions can have widespread, irreversible negative consequences.

16

 Target for Coercion/Regulatory Pressure: The entity controlling the `owner` address becomes a

central point of failure and a prime target for external pressure to misuse these powers against

users or the system.

 Undermining Trust and Decentralization: For users who expect a high degree of decentralization

and censorship resistance from a blockchain-based token, such extensive and unilateral owner

powers are a fundamental concern, as the token's behavior and user assets are entirely subject

to the owner's discretion and security.

9. Conclusion
The Cashiva contracts suite (`CashivaMintableToken` and `CashivaNativeWrappedToken`) demonstrates

the use of OpenZeppelin's upgradeable contracts for its on-chain implementation. The audit identified

three Critical severity findings, one High severity finding and one Medium severity finding that require

immediate attention.

Notably, the multiple reentrancy vulnerabilities (CST-C-001) in `requestWithdrawal` and in _unwrap (CST-

C-002) - require urgent attention due to their potential to enable direct fund theft and corrupt contract

state. Another critical issue (CST-C-003) involves dangerous storage location shadowing across inherited

contracts, which could result in unpredictable behavior and data corruption. The high-severity issue

(CST-H-001) exposes a risk of arbitrary ETH transfers via `_withdrawFee`, potentially allowing fee theft.

The medium-severity issue (CST-M-001) highlights significant centralization risks tied to owner-controlled

privileged functions such as `burnFrozenFunds`.

A defining characteristic of this smart contract system is the absolute and unilateral power vested in

the owner role, alongside significant capabilities granted to Minter and Burner roles. This owner role has

complete control over critical aspects such as fee management (`setWrapFeeParams`, `withdrawFee`),

oracle management (`setOracle`), account control (`freeze`, `unfreeze`, `burnFrozenFunds`), operational

control (`pause`, `unpause`), and contract governance via upgrades (`_authorizeUpgrade`), as detailed in

the "Privileged Roles & Access Control Analysis" and "Centralization Risks & Owner Capabilities" sections.

Consequently, the integrity of the entire system and the security of user assets are wholly dependent on

the singular owner address (and other privileged role addresses) remaining secure and acting

benevolently. This presents a critical centralization risk that users must be aware of.

Implementing external safeguards such as multisignature wallets for privileged roles (especially

the owner) and timelock mechanisms for sensitive operations is strongly recommended as an immediate

measure. For the long-term health and trustworthiness of the token, the Cashiva team should consider

redesigning aspects of the contract in future iterations to incorporate on-chain constraints on owner

powers, enforce stricter separation of duties, and potentially distribute administrative controls more

broadly.

By addressing all identified technical findings, particularly the critical reentrancy and storage issues, and

by transparently acknowledging and working to mitigate the profound centralization risks inherent in the

current contract design, the Cashiva team can work towards enhancing the security, reliability, and

trustworthiness of the Cashiva smart contracts.

